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We refute the claims made by Riera and ChdlBbys. Rev. 58, 4001(1998] by demonstrating that they
have not provided enough dat@quisite in their series expansion methéw draw reliable conclusions about
criticality of self-avoiding walks on the Sierpinski gasket family of fractals.

PACS numbgs): 05.40—-a, 05.50+q, 64.60.Ak, 61.4kte

The self-avoiding walkSAW) on a lattice is a random the total number of distinct SAWs, approaches 133/32, being
walk that must not contain self-intersections. The criticalityalways larger than the Euclidean valyg=43/32.
of SAWSs has been extensively studied as a challenging prob- The intriguing FSS results motivated endeavors to extend
lem in statistical physics on the Euclidean lattices and orthe exact RG results beyorig=8. However, since this ex-
fractal lattices as well. Accordingly, the question has beeriension appeared to be an arduous task, a new insight was
posed whether the critical behavior of SAWs on a Euclidearfieeded. This insight came from a formulation of the Monte
lattice can be retrieved via a limit of an infinite number of Carlo renormalization grougMCRG) method for fractals

fractals whose properties gradually acquire the correspond45], Which produced values for and y up to b=80. For
ing Euclidean values. In this Comment we scrutinize the?<P=8 the MCRG findings deviated, from the exact val-

methods used so far to answer the foregoing question. ~ U€S, at most 0.03%, in the casesgfand 0.2% in the case of

The most frequently studied infinite family of finitely g
ramified fractals appears to be the Sierpinski gasksd) -
family. Each member of the SG family is labeled by an in- T
tegerb(2<b=w®), and whenb— both the fractad; and 24
spectraldg dimension approach the Euclidean value 2. Con- X
cerning the study of the criticality of SAWSs, these fractal , [ A \
lattices are perfect objects for an application of the renormal- | x 7
ization group(RG) method, due to their intrinsic dilation [ 4
symmetry(the so-called self-similarijyand their finite rami- 16 - Moo
fication. The latter property enables one to construct a finite_é ‘\A\A
set of the RG transformations and therefrom an exact treat  , [aeflE=
ment of the problem. This treatment was first applied by
Dhar [1], for b=2, and later it was extendd@] up to b Y T R e
=8. The obtained results of the corresponding critical expo- 1/b

nents, for the finite sequencesb<8, were not sufficientto ~ FIG. 1. The SAW critical exponen as a function of 1. The
infer their relation to the relevant Euclidean values. How-S°lid triangles represent results of the MCRG calculaffglnwhile

ever, these results inspired the finite-size scaliR§9 ap- the open triangles represent results obtained by Riera and Chalub

. . (RC) via the series expansion methf&l. In both cases the solid
proach to the problerf], which brought about the predic- lines that connect the data symbols serve as the guide to the eye.

tion that the SAW critical exponents on fractals do Nnotgne should observe unusually large error bars in the case of RC
necessarily approach their Euclidean values wiere. In- results, whereas in the case of the MCRG results the error bars lie
deed, Dhai 3] found that the critical exponent, associated within the data symbols. The horizontal dashed line represents the
with the SAW end-to-end distance, tends to the Euclidearuclidean valueyz=43/32 (which is also indicated by the solid
value 3/4, whereas the critical exponepntassociated with horizontal arrow.
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TABLE I. The exact RG and MCR@n the parenthesgsesults
of the PDW critical exponents and y for the SG fractals for 2
<b=100. The exact RG results have been obtaind® 8], while

COMMENTS

the MCRG results are calculated in the present work.

b v exact(MC) v exact(MC)

2 0.79870(0.79801 0.00075) 0.9520(0.95@30.0018)
3 0.82625(0.826880.00043) 0.9631(0.96380.0014)
4 0.84311(0.843320.00010) 0.9673(0.96650.0011)
5 0.85469(0.854760.00008) 0.9695(0.96900.0011)
6 0.86329(0.863280.00006) 0.9711(0.970670.0012)
7 0.87000(0.86992 0.00006) 0.9726(0.97230.0012)
8 0.87542(0.87536 0.00005) 0.9742(0.97320.0012)
9 0.87992(0.879780.00004) 0.9759(0.97490.0013)
10 0.88374(0.883760.00013) 0.9777(0.97700.0014)
12 0.88992(0.889840.00011) 0.9815 (0.98120.0015)
15 0.89679(0.896620.00009) 0.9877 (0.98390.0016)
17 0.90035(0.900460.00008) 0.9919(0.99%10.0016)
20 0.90467(0.904660.00007) 0.9982(0.994160.0018)
25 0.91011(0.910020.00006) 1.0084(1.00@50.0019)
30 0.91417(0.914150.00002) 1.0180(1.01810.0020)
35 0.91736(0.917270.00005) 1.0270(1.01940.0022)
40 0.91996(0.919950.00005) 1.0354(1.03680.0023)
50 0.92399(0.923980.00004) 1.0504(1.04570.0025)
60 0.92701(0.927040.00003) 1.0634(1.06960.0026)
70 0.92940(0.929340.00003) 1.0750(1.07890.0028)
80 0.93136(0.931360.00001) 1.0853(1.08540.0029)
90 0.93300(0.933060.00001) 1.0945(1.09480.0031)
100 0.93441(0.934370.00002) 1.1029(1.10890.0032)
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FIG. 2. The PDW critical exponent as a function of 4. The
solid line represents exact resul&d, while the solid triangles rep-
resent the MCRG resultésee Table 1 The error bars for the
MCRG results lie within the data symbols. The inset is given in
order to depict the limiting value of (solid circle that coincides
with Euclidean valuevg=1.

[8,9] has turned out to be quite appropriate. The PDW model
describes such a random self-avoiding walk on SG fractals in
which the walker is allowed to choose randomly, but self-
similarly, a limited number of possible step directior&.
This model corresponds to the directed random walk on Eu-
clidean lattices, in which casg-=1 andyg=1. By apply-

ing the exact RG approach, the critical exponerstnd y for

the PDW have been obtaing8,9] for eachb(2<sb<x).
Moreover, it was demonstrated exactly thadpproaches the

Euclidean valuevg=1, while y tends to the non-Euclidean
valuey=2, whenb—«. Here, we apply the MCRG method
. In addition, the behavior of the entire sequence of theused in the case of a SAW [4,5]) to calculater andy of
MCRG findings, as a function df, supported the FSS pre- the PDW model for 2b<100. Our results, together with
dictions. the exact findings, are presented in Table | and depicted in
Recently, Riera and Chalulé] made a different type of Figs. 2 and 3. One can see that, in the entire region under
endeavor to obtain results for the critical exponenfor  study, the agreement between the MCRG results and the ex-
largeb, by applying an original series expansion methd ~ act data is excellent. Indeed, the deviation of the MCRG
However, the data of Riera and Chal(RC) display a quite  results forv from the corresponding exact results is at most
different behavior than the MCRG resultsee Fig. 1 As
regards comparison of the RC results with the available exac*,, f
RG resultg2], one may notice a surprising discrepancy: for v
b=7 the RC result deviates 198hich should be compared 10
with the respective MCRG deviation 0.13%while for b
=8 the RC result deviates 33% from the exact re&uhich
is again much larger than the corresponding MCRG devia-1.0s
tion 0.15%. On the other hand, concerning the behavioy of
beyondb=8, the RC results start to decrease, whereas the
MCRG results monotonically increase. Furthermore, Riera, |
and Chalulj 6] claimed that, in contrast with the FSS predic-
tion [3], v should approach the Euclidean value 43/32
=1.34375, in the limit of very larg®. These discrepancies
call for inspection of both methods, that is, of the MCRG %% L
technique[4,5] and the series expansion methi@7]. We 0.0 0.1 02 0.3

1 n 1
04 1/ 95
are going first to reexamine our MCRG approach, and then g 3. The PDW critical exponent as a function of 1. The
we shall comment on the applicability of the RC series eX-lid line represents exact resulg, while the solid triangles rep-

pansion method for large. resent the MCRG resultsee Table)l The data error bars for the
We have found that the best way to check the validity 0fMCRG resuits forb up to 30 are invisible, while for larges the

the MCRG method, for largb, is to apply it in a case of a error bars are comparable to the size of the symbols. The inset is

random walk model that is exactly solvable for all posstible given in order to depict the limiting valug=2 (solid circle) which

To this end, the so-called piecewise directed weioOW) is different from the Euclidean valuge=1.
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S0 SG fractal, in their series expansion approach. One can see
nt that only for 2<b=<8 did Riera and Chalub generate a suf-
n=b4/3 ficient number of coefficientc,(b) so as to probe the

aor fractal-behavior regiotiin which the conditiom,,,=b*?is

[ satisfied. On the other hand, fdo>8, in all cases studied,
. E%ﬁg[\‘/?(l)JR EBEI(-:IIAI\IIDI%%N the maximum lengtm,,,, of enumerated SAW§6] is not

L larger than 16, and thereby the corresponding generating
[ functionsCy(x) remain in the domain of the Euclidean be-
o0 [ havior (see Fig. 4 For instance, in order to study the criti-

i cality of SAWSs on the SG fractal, fds=80, it is a prereg-
uisite to calculate all coefficients,(b) in the interval &=n
<Npmax, Wheren,,,, must be larger than 86~ 339, which is
far beyond then,,,,=13 that was reached 6] for b=80.

This explains why the RC results for the SG critical expo-
E— E— E— nentvy (see Fig. 1, with increasingo, wrongly become closer
to the Euclidean value 1.34375.

FIG. 4. The schematic representation of the fractal and Euclid- The problems discussed above, that is, the problems with
ean behavior of SAWs on the SG fractals. Regions of the twolot long enough SAWs, do not appear in the MCRG study of
different behaviors are separated by the solid limeb*3. The = SAWSs on the SG fractals, as the RG method in general takes
height of each vertical linécomprised of small trianglgscorre-  into account SAWs of all length scales. Incidentally, we
sponds to the maximum length of tinestep SAWs enumerated in  would like to mention that if6] it was erroneously quoted
the series expansion approach by Riera and Ch@ufor a given  that in the MCRG studief4,5] one Monte CarldMC) real-

b. In order to study the criticality of SAWSs on the SG fractals it is ization corresponds to simulation of one SAW. In fact, one
necessary to extend the vertical lines beyond the solid curve. AcMC realization implies simulations of all possible walks on
cordingly, one should observe that results of Riera and CH#llib  the fractal generator, which appears to be the smallest homo-
do not probe the fractal region ftr>8. geneous part of the SG fractal. For instance, for ike80

0.08%, while in the case of it is at most 0.8%. This test of SG fractal, in order to calculate the critical exponentin

the MCRG method provides novel reliability for its applica- one MC realization we simulatd8] all n-step SAWs witm

L : . ranging between 1 and 3240.

tion in studies of random walks on SG with large Finally, we would like to comment on the analytical ar-
Because of the confirmed reliability of the MCRG Y y

method, and because Riera and Chdl6b have obtained glu r_ner|1_t, glven_m[6],owh|ch wats) assun;]ed tho Support thg
quite different results, in the case of SAWS on SG, we hav&'M M, y=7ve. One can observe that the correspond-
reason to assume that their conclusions were obtained in aAg argument does not exploit particular properties of the
incorrect way. Thus, we may pose the question, what waSAWSs studied. Thus, if the argument were valid, it could be
wrong in the application of the series expansion method irapplied to other types of SAWs on fractals leading to the

the work of Riera and Chalu]? Let us start with mention- same conclusion lim _y=yg. However, the case of the

ing that in the series expansion study of the SAW the firsppyy discussed in this Comment is a definite counterexam-
task is to determine the numbeg(b) of all possible SAWs  pje of the foregoing conclusion, as it was rigorously demon-

for a given numbem of steps, where £n<npa.. Of  strated[8,9] that in this case lim _y# ye.
course, in practice, it is desirable to perform this enumeration b=ce

; In conclusion, let us state that in this Comment we have
for very largen,.y, as the corresponding numbexgb) of o ' ; :
all n-step SAWs represent coefficients of the relevant gener\-"nd'c_ated the expectation that the MCRG te(_:hnlqug for
ating functionCy(x) =S7_,c,(b)x" (wherex is the weight studying the SAW critical exponents on fractals is a reliable
~ “n=1%n

factor for each step whose singular behavior determines method and a valuable tool in discussing the guery as io

critical exponents of SAWS. In order to take into account thewhether the critical behavior of SAWSs on a Euclidean lattice
: an be achieved through a limit of an infinite number of

existence of the SG lacunarity, the average end-to-end dig- : .
tance of the set ai-step SAWSs should be larger than the Size_ractals whose properties gradually acquire the correspond-

ing Euclidean values. On the other hand, we have demon-
of the smallest homogeneous part of the SG fra@althat . )
is, . should be larger thah®3. In a case when the num- strated that Riera and Chal{#), in an attempt to answer the

ber of steps is smaller than® the corresponding SAWs mentioned query by applying the series expansion method,

percieve the underlying fractal lattice as a Euclidean subhave not provided a sufficient number of numerical data for

strate. In order to make it more transpicuous, we present i@cztllij:y O;g::z:‘e“g OTthe?eVX)Sreonat:eiﬁfi rferﬁgéa:cfovr\gtzllnﬁtz
Fig. 4 the curven=b*3 which divides the §,n) plane in gp ' » any

two regions so that one of them corresponds to the fracta?et of data about the lardebehavior of the critical exponent

behavior ofn-step SAWSs, while the other corresponds to the” cannot be tenable.

Euclidean behavior. In the same figure, for a gibemwe also We would like to acknowledge helpful and inspiring cor-
depict the number of coefficientempty small trianglgsthat  respondence with D. Dhar concerning the matter discussed in
were obtained by Riera and Chall8] for the corresponding this Comment.
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