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Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Critical behavior of the chain-generating function of self-avoiding walks
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Sava Milošević
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We refute the claims made by Riera and Chalub@Phys. Rev. E58, 4001~1998!# by demonstrating that they
have not provided enough data~requisite in their series expansion method! to draw reliable conclusions about
criticality of self-avoiding walks on the Sierpinski gasket family of fractals.

PACS number~s!: 05.40.2a, 05.50.1q, 64.60.Ak, 61.41.1e
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The self-avoiding walk~SAW! on a lattice is a random
walk that must not contain self-intersections. The critical
of SAWs has been extensively studied as a challenging p
lem in statistical physics on the Euclidean lattices and
fractal lattices as well. Accordingly, the question has be
posed whether the critical behavior of SAWs on a Euclide
lattice can be retrieved via a limit of an infinite number
fractals whose properties gradually acquire the correspo
ing Euclidean values. In this Comment we scrutinize
methods used so far to answer the foregoing question.

The most frequently studied infinite family of finitel
ramified fractals appears to be the Sierpinski gasket~SG!
family. Each member of the SG family is labeled by an
tegerb(2<b<`), and whenb→` both the fractaldf and
spectralds dimension approach the Euclidean value 2. Co
cerning the study of the criticality of SAWs, these frac
lattices are perfect objects for an application of the renorm
ization group~RG! method, due to their intrinsic dilation
symmetry~the so-called self-similarity! and their finite rami-
fication. The latter property enables one to construct a fi
set of the RG transformations and therefrom an exact tr
ment of the problem. This treatment was first applied
Dhar @1#, for b52, and later it was extended@2# up to b
58. The obtained results of the corresponding critical ex
nents, for the finite sequence 2<b<8, were not sufficient to
infer their relation to the relevant Euclidean values. Ho
ever, these results inspired the finite-size scaling~FSS! ap-
proach to the problem@3#, which brought about the predic
tion that the SAW critical exponents on fractals do n
necessarily approach their Euclidean values whenb→`. In-
deed, Dhar@3# found that the critical exponentn, associated
with the SAW end-to-end distance, tends to the Euclide
value 3/4, whereas the critical exponentg, associated with
PRE 611063-651X/2000/61~2!/2141~4!/$15.00
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the total number of distinct SAWs, approaches 133/32, be
always larger than the Euclidean valuegE543/32.

The intriguing FSS results motivated endeavors to ext
the exact RG results beyondb58. However, since this ex
tension appeared to be an arduous task, a new insight
needed. This insight came from a formulation of the Mon
Carlo renormalization group~MCRG! method for fractals
@4,5#, which produced values forn andg up to b580. For
2<b<8 the MCRG findings deviated, from the exact va
ues, at most 0.03%, in the case ofn, and 0.2% in the case o

FIG. 1. The SAW critical exponentg as a function of 1/b. The
solid triangles represent results of the MCRG calculation@5#, while
the open triangles represent results obtained by Riera and Ch
~RC! via the series expansion method@6#. In both cases the solid
lines that connect the data symbols serve as the guide to the
One should observe unusually large error bars in the case of
results, whereas in the case of the MCRG results the error bar
within the data symbols. The horizontal dashed line represents
Euclidean valuegE543/32 ~which is also indicated by the solid
horizontal arrow!.
2141 ©2000 The American Physical Society
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g. In addition, the behavior of the entire sequence of
MCRG findings, as a function ofb, supported the FSS pre
dictions.

Recently, Riera and Chalub@6# made a different type o
endeavor to obtain results for the critical exponentg for
largeb, by applying an original series expansion method@7#.
However, the data of Riera and Chalub~RC! display a quite
different behavior than the MCRG results~see Fig. 1!. As
regards comparison of the RC results with the available e
RG results@2#, one may notice a surprising discrepancy: f
b57 the RC result deviates 19%~which should be compare
with the respective MCRG deviation 0.13%!, while for b
58 the RC result deviates 33% from the exact result~which
is again much larger than the corresponding MCRG de
tion 0.15%!. On the other hand, concerning the behavior og
beyondb58, the RC results start to decrease, whereas
MCRG results monotonically increase. Furthermore, Ri
and Chalub@6# claimed that, in contrast with the FSS predi
tion @3#, g should approach the Euclidean value 43/
51.343 75, in the limit of very largeb. These discrepancie
call for inspection of both methods, that is, of the MCR
technique@4,5# and the series expansion method@6,7#. We
are going first to reexamine our MCRG approach, and t
we shall comment on the applicability of the RC series
pansion method for largeb.

We have found that the best way to check the validity
the MCRG method, for largeb, is to apply it in a case of a
random walk model that is exactly solvable for all possibleb.
To this end, the so-called piecewise directed walk~PDW!

TABLE I. The exact RG and MCRG~in the parentheses! results
of the PDW critical exponentsn and g for the SG fractals for 2
<b<100. The exact RG results have been obtained in@8,9#, while
the MCRG results are calculated in the present work.

b n exact~MC! g exact~MC!

2 0.79870(0.7980160.00075) 0.9520(0.950360.0018)
3 0.82625(0.8268360.00043) 0.9631(0.963860.0014)
4 0.84311(0.8433260.00010) 0.9673(0.966560.0011)
5 0.85469(0.8547060.00008) 0.9695(0.969060.0011)
6 0.86329(0.8632960.00006) 0.9711(0.970760.0012)
7 0.87000(0.8699260.00006) 0.9726(0.972360.0012)
8 0.87542(0.8753660.00005) 0.9742(0.973260.0012)
9 0.87992(0.8797860.00004) 0.9759(0.974960.0013)
10 0.88374(0.8837060.00013) 0.9777(0.977060.0014)
12 0.88992(0.8898460.00011) 0.9815 (0.981260.0015)
15 0.89679(0.8966260.00009) 0.9877 (0.983960.0016)
17 0.90035(0.9004060.00008) 0.9919(0.991160.0016)
20 0.90467(0.9046060.00007) 0.9982(0.994660.0018)
25 0.91011(0.9100260.00006) 1.0084(1.000560.0019)
30 0.91417(0.9141560.00002) 1.0180(1.018160.0020)
35 0.91736(0.9172760.00005) 1.0270(1.019460.0022)
40 0.91996(0.9199560.00005) 1.0354(1.036860.0023)
50 0.92399(0.9239360.00004) 1.0504(1.045760.0025)
60 0.92701(0.9270460.00003) 1.0634(1.069660.0026)
70 0.92940(0.9293460.00003) 1.0750(1.078960.0028)
80 0.93136(0.9313660.00001) 1.0853(1.085460.0029)
90 0.93300(0.9330060.00001) 1.0945(1.094860.0031)
100 0.93441(0.9343760.00002) 1.1029(1.108960.0032)
e

ct
r

-

e
a

n
-

f

@8,9# has turned out to be quite appropriate. The PDW mo
describes such a random self-avoiding walk on SG fractal
which the walker is allowed to choose randomly, but se
similarly, a limited number of possible step directions@8#.
This model corresponds to the directed random walk on
clidean lattices, in which casenE51 andgE51. By apply-
ing the exact RG approach, the critical exponentn andg for
the PDW have been obtained@8,9# for eachb(2<b,`).
Moreover, it was demonstrated exactly thatn approaches the
Euclidean valuenE51, while g tends to the non-Euclidea
valueg52, whenb→`. Here, we apply the MCRG metho
~used in the case of a SAW in@4,5#! to calculaten andg of
the PDW model for 2<b<100. Our results, together with
the exact findings, are presented in Table I and depicte
Figs. 2 and 3. One can see that, in the entire region un
study, the agreement between the MCRG results and the
act data is excellent. Indeed, the deviation of the MCR
results forn from the corresponding exact results is at mo

FIG. 2. The PDW critical exponentn as a function of 1/b. The
solid line represents exact results@8#, while the solid triangles rep-
resent the MCRG results~see Table 1!. The error bars for the
MCRG results lie within the data symbols. The inset is given
order to depict the limiting value ofn ~solid circle! that coincides
with Euclidean valuenE51.

FIG. 3. The PDW critical exponentg as a function of 1/b. The
solid line represents exact results@9#, while the solid triangles rep-
resent the MCRG results~see Table I!. The data error bars for the
MCRG results forb up to 30 are invisible, while for largerb the
error bars are comparable to the size of the symbols. The ins
given in order to depict the limiting valueg52 ~solid circle! which
is different from the Euclidean valuegE51.
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0.08%, while in the case ofg it is at most 0.8%. This test o
the MCRG method provides novel reliability for its applic
tion in studies of random walks on SG with largeb.

Because of the confirmed reliability of the MCR
method, and because Riera and Chalub@6# have obtained
quite different results, in the case of SAWs on SG, we h
reason to assume that their conclusions were obtained i
incorrect way. Thus, we may pose the question, what w
wrong in the application of the series expansion method
the work of Riera and Chalub@6#? Let us start with mention
ing that in the series expansion study of the SAW the fi
task is to determine the numbercn(b) of all possible SAWs
for a given numbern of steps, where 1<n<nmax. Of
course, in practice, it is desirable to perform this enumera
for very largenmax, as the corresponding numberscn(b) of
all n-step SAWs represent coefficients of the relevant gen
ating functionCb(x)5(n51

` cn(b)xn ~wherex is the weight
factor for each step!, whose singular behavior determine
critical exponents of SAWs. In order to take into account
existence of the SG lacunarity, the average end-to-end
tance of the set ofn-step SAWs should be larger than the si
of the smallest homogeneous part of the SG fractal@3#, that
is, nmax should be larger thanb4/3. In a case when the num
ber of steps is smaller thanb4/3 the corresponding SAWs
percieve the underlying fractal lattice as a Euclidean s
strate. In order to make it more transpicuous, we presen
Fig. 4 the curven5b4/3, which divides the (b,n) plane in
two regions so that one of them corresponds to the fra
behavior ofn-step SAWs, while the other corresponds to t
Euclidean behavior. In the same figure, for a givenb, we also
depict the number of coefficients~empty small triangles! that
were obtained by Riera and Chalub@6# for the corresponding

FIG. 4. The schematic representation of the fractal and Euc
ean behavior of SAWs on the SG fractals. Regions of the
different behaviors are separated by the solid linen5b4/3. The
height of each vertical line~comprised of small triangles! corre-
sponds to the maximum length of then-step SAWs enumerated i
the series expansion approach by Riera and Chalub@6# for a given
b. In order to study the criticality of SAWs on the SG fractals it
necessary to extend the vertical lines beyond the solid curve.
cordingly, one should observe that results of Riera and Chalub@6#
do not probe the fractal region forb.8.
e
an
s
n

t

n

r-

e
is-

-
in

al

SG fractal, in their series expansion approach. One can
that only for 2<b<8 did Riera and Chalub generate a su
ficient number of coefficientscn(b) so as to probe the
fractal-behavior region~in which the conditionnmax>b4/3 is
satisfied!. On the other hand, forb.8, in all cases studied
the maximum lengthnmax of enumerated SAWs@6# is not
larger than 16, and thereby the corresponding genera
functionsCb(x) remain in the domain of the Euclidean b
havior ~see Fig. 4!. For instance, in order to study the crit
cality of SAWs on the SG fractal, forb580, it is a prereq-
uisite to calculate all coefficientscn(b) in the interval 1<n
<nmax, wherenmax must be larger than 804/3'339, which is
far beyond thenmax513 that was reached in@6# for b580.
This explains why the RC results for the SG critical exp
nentg ~see Fig. 1!, with increasingb, wrongly become closer
to the Euclidean value 1.343 75.

The problems discussed above, that is, the problems
not long enough SAWs, do not appear in the MCRG study
SAWs on the SG fractals, as the RG method in general ta
into account SAWs of all length scales. Incidentally, w
would like to mention that in@6# it was erroneously quoted
that in the MCRG studies@4,5# one Monte Carlo~MC! real-
ization corresponds to simulation of one SAW. In fact, o
MC realization implies simulations of all possible walks o
the fractal generator, which appears to be the smallest ho
geneous part of the SG fractal. For instance, for theb580
SG fractal, in order to calculate the critical exponentg, in
one MC realization we simulated@5# all n-step SAWs withn
ranging between 1 and 3240.

Finally, we would like to comment on the analytical a
gument, given in@6#, which was assumed to support th
claim lim

b→`
g5gE . One can observe that the correspon

ing argument does not exploit particular properties of
SAWs studied. Thus, if the argument were valid, it could
applied to other types of SAWs on fractals leading to t
same conclusion lim

b→`
g5gE . However, the case of the

PDW discussed in this Comment is a definite counterexa
ple of the foregoing conclusion, as it was rigorously demo
strated@8,9# that in this case lim

b→`
gÞgE .

In conclusion, let us state that in this Comment we ha
vindicated the expectation that the MCRG technique
studying the SAW critical exponents on fractals is a relia
method and a valuable tool in discussing the query as
whether the critical behavior of SAWs on a Euclidean latt
can be achieved through a limit of an infinite number
fractals whose properties gradually acquire the correspo
ing Euclidean values. On the other hand, we have dem
strated that Riera and Chalub@6#, in an attempt to answer th
mentioned query by applying the series expansion meth
have not provided a sufficient number of numerical data
a study of criticality of SAWs on the SG fractals with finit
scaling parametersb. Therefore, any inference from such
set of data about the largeb behavior of the critical exponen
g cannot be tenable.

We would like to acknowledge helpful and inspiring co
respondence with D. Dhar concerning the matter discusse
this Comment.
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